
COURSE OBJECTIVES 
CHAPTER 3 

 
3. HYDROSTATICS  
 
 1. Be able to explain a distributed force and a resultant force  and relate them to a 

submerged ship’s hull. 
  
 2. Know how to calculate the absolute pressure below the surface of the water. 
  
 3. Be able to apply Archimedes Principle to a ship. 
  
 4. Know the necessary and sufficient conditions for static equilibrium and be able to 

apply these conditions to various situations in Naval Engineering. 
  
 5. Be able to qualitatively show the direction of the shift in the center of gravity of 

an object after there has been a weight addition, weight removal, or a weight shift 
on the object. 

  
 6. Calculate a ship's vertical center of gravity following weight shifts, additions and 

deletions in the vertical direction. 
  
 7. Be able to calculate a ship's transverse center of gravity following weight shifts, 

additions and deletions in the transverse direction. 
  
 8. Be able to calculate the angle of list after a transverse shift of weight onboard a 

ship assuming lists of less than 10 degrees. 
  
 9. Be able to draw a vector picture of a ships section at midships that has been 

inclined due to a transverse weight shift.  Be able to show all the relevant forces 
acting on this section and be able to properly label the diagram. 

  
 10. Be able to state the purpose of an inclining experiment and explain how it is done 

including the derivation of relevant equations, figures, and diagrams.  Be able to 
do the calculations associated with an inclining experiment. 

  
 11. Be able to calculate forward and after drafts following longitudinal weight shifts, 

additions, and deletions.  Be able to show all the geometric relationships used in 
these problems on a diagram.  Define trim. 

  
 12. Define, understand, and use Metacentric Height and Metacentric Radius.   

  
13. Calculate a ship's vertical center of gravity from an Inclining Experiment. 

 
 14.  Understand the dangers and basic procedures followed in drydocking. 

 (i)
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3.1 Archimedes Principle Revisited and Static Equilibrium 
 
Most people find it truly amazing that steel ships weighing hundreds of thousands of tons can 
float in water. We know that they float because we have seen it with our own eyes, but what we 
have seen somehow seems contrary to other everyday experiences. Take a steel bar, throw it into 
the water and it will sink immediately. Why will a pound or so of metal sink, whereas several 
tons of the same metal will float?   
 
From your study of Chapter 2 you realize that each object in the water is buoyed up with a force 
equal to the weight of the water displaced by the object. To get an object to float, the object must 
be able to displace a volume of water equal in weight to the weight of the object itself. With this 
knowledge you can build a concrete canoe! 
 
At this point you know the name of the Greek mathematician who discovered this principle of 
flotation - Archimedes. 
 
 Be sure that you can verbally and mathematically define Archimedes Principle. 
 
! 

Let us combine the concepts of Archimedes Principle with static equilibrium as applied to a free-
floating ship in calm water.   
 
 
3.1.1 Forces Acting on a Floating Body  
 
The forces of concern on a freely floating ship are the distributed gravitational forces and the 
distributed buoyant forces. The forces are said to be distributed because they act over the entire 
ship. Some engineering analysis requires the use of the distributed force system to do the 
modeling (this will be used in Chapter 6). Other analysis allows the engineer to replace the 
distributed force system with an equivalent single resultant vector. The resultant vector is the 
sum of the distributed force system and is considered to act at such a location as to create the 
same effect on the body as the distributed system. 
 
 In this chapter all distributed forces are replaced with resultant vectors to do the 

hydrostatic analysis. ! 
 
 
3.1.1.1 Force due to Gravity  
 
The force of gravity acts on each little part of the ship. Instead of dealing with millions of 
weights acting at millions of places throughout a ship, we resolve all of these weights into one 
resultant force, called the resultant weight or displacement (∆S) of the ship. This gravitational 
force, or resultant weight, is resolved to act at the center of gravity (G), which is simply the 
weighted average location of all of the weights that make up a ship.  See Figure 3.1. 
 
 

 3 - 1



3.1.1.2 Force due to Buoyancy 
 
The second system of distributed forces on a freely floating ship comes from the pressure exerted 
on the submerged part of the hull by the water. These hydrostatic forces act perpendicular to the 
surface of the hull and can be resolved into horizontal and vertical components with respect to 
the surface of the water.   
 
The sum of the horizontal hydrostatic forces will be zero. This should make sense to you.  If the 
horizontal forces didn’t balance it would imply that a ship would move through the water all by 
itself without power or external forces. This kind of spontaneous movement does not occur. 
 
The sum of the vertical hydrostatic forces is not zero. The net vertical force is called the resultant 
buoyant force (FB ). This force, like weight, is resolved to act at a unique point. The buoyant 
force acts at the center of buoyancy (B), which is the geometric centroid of the underwater 
volume. See Figure 3.1. 
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Figure 3.1 – Ship at Static Equilibrium Showing Resultant Weight and Distributed & Resultant    

Buoyant Forces. 
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Notes on Figure 3-1: 
 

• The distributed forces shown on the outside of the hull are being replaced by the resultant 
buoyant force. Normally you would not show both because it is redundant. 

 
• The absolute pressure at depth “z” below the water surface is due to the atmospheric 

pressure plus the pressure from the column of water above the point of interest. This is 
shown in Equation 3-3.   

 

2

2

144
1ρ

in
ftzgPP atmabsolute +=  

 
         
 where:  Pabsolute  is the absolute pressure at depth “z” (psi). 
   Patm is the atmospheric pressure at the surface of the water (psi). 
   ρ is the density of the water (lb- s2/ft4). 
   g is the magnitude of the acceleration of gravity. (32.17 ft/s2). 
 

• The resultant weight and the resultant buoyant force always act perpendicular to the 
surface of the water. Resultant buoyant force acts upward while the resultant weight force 
acts downward. 

 
• The vector arrows representing the resultant weight and resultant buoyant force must 

have their heads (or tails) attached to the center of gravity and center of buoyancy, be 
equal in length, and be labeled with symbols. 

 
• We always use a Capital “G” for the ship’s center of gravity and a lower case “g” for the 

center of gravity of some object on the ship. You must use this convention in your 
diagrams. 

 
• The magnitude of the resultant weight (∆S ) is the displacement (∆S ). The resultant 

weight is a vector and the displacement is a scalar. Both have units of LT. 
 

• The center of buoyancy is at the centroid of the submerged volume of the hull. 
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3.1.2 Static Equilibrium  
 
Static Equilibrium is defined as a condition where: 
 
   “........the sum of the forces and the sum of the moments on a body 

are zero so that the body has no tendency to translate or rotate.” 
 
Each of the conditions is met in Figure 3.1. Let us explore each of them in the following 
paragraphs. 
 
 
3.1.2.1 Forces  
 
In general, there are two ways to mathematically state that the sum of the forces is zero.  The 
following expression shows the vector equation stating this. 
 
 

0=∑F
r

      
 
 
This vector expression may be broken into an equivalent set of scalar equations: 
 

 
0=∑ xF  0=∑ yF  0=∑ zF     

 
 
In Figure 3.1 there are only two vertical forces shown. Immediately we can see that these forces 
must be equal and opposite or else the ship would sink or fly! We can prove this formally by 
applying condition of static equilibrium of forces to the vector diagram shown in Figure 3.1. 
 
 

0=∑ xF   0=∑ yF sBz FF ∆−==∑ 0  
             
         F sB ∆=  
 
 
 where: Σ F z  is the sum of the forces in the vertical direction with positive “z” as the up 

direction. 
  FB  is the magnitude of the resultant buoyant force (lb). 
  ∆S   is the magnitude of the resultant  weight of the ship, called the 

displacement (lb). 
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Example 3.1 Calculate the submerged volume of a DDG51 floating at a draft of 21.0 ft and 
level trim in sea water. (ρ= 1.99 lb-s2/ft4) (g = 32.17 ft/s2) (1LT = 2240 lb). 

 
 From DDG51 curves of form. 
 
   @ 21 ft draft -   curve 1 = 144 
   ⇒ ∆S = 144 x 60 LT 
    ∆S = 8640 LT 
 
 From Principle of Static Equilibrium 
 
    FB = ∆S 

   ⇒ FB = 8640 LT 
 
 From Archimedes Principle 

FB ( lb ) ' ρ ( lb&s 2/ft 4) g ( ft/s 2) L ( ft 3)

L ( ft 3) '
FB ( lb )

ρ ( lb&s 2/ft 4) g ( ft/s 2)

L ( ft 3) '
8640 LT 2240 lb/LT

1.99 lb&s 2/ft 4 32.17 ft/s 2

L ( ft 3) ' 302,300 ft 3

 
3.1.2.2 Moments  
 
Equilibrium of forces alone would not guarantee static equilibrium. The sum of the moments 
must also be zero!  For the forces shown in Figure 3-1, the sum of moments about any arbitrary 
reference point would be zero. This is because the two resultant vertical forces shown have equal 
magnitudes, opposite direction, and lines of action that are coincident.   
 
The following expression shows how to mathematically state the sum of the moments is zero 
about any reference point “p”.  Notice it is a vector equation. The direction of the vector is 
normal to the plane containing the lever arm and the force. 
 
 
     0=∑ pM

r
      

 
 
 The concept of a moment was discussed in Chapter 1 Section 1.9.4.  Please go back and  ! re-read that section if you are not comfortable with the concept of a moment. 
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3.1.3 Summary  
 
In summary, Figure 3.1 shows a ship in static equilibrium because the two necessary and 
sufficient conditions for static equilibrium have been met; the vector sum of the forces are zero 
and the vector sum of the moments are zero. This means that the ship will have no tendency to 
move either in translation or rotation. It will just sit in the same position until something changes 
with the ship or an outside force acts on it. Further, it means that Archimedes Principle can be 
used to find the displacement of a freely floating ship since it is equal to the magnitude of the 
buoyant force. 
 
 
Student Exercise: To see if you understood the concepts of this section draw the same ship in 

static equilibrium assuming that a large weight has been shifted from port 
to starboard so that the center of gravity of the ship has moved off the 
centerline.  Label this figure “Figure 3.2" and add a caption to describe 
what you are trying to show. 
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3.2 New States of Static Equilibrium Due to Weight Additions, Weight  
Removals and Weight Shifts on a Floating Ship. 
 

In Section 3.1 we were able to get a solid foundation in what static equilibrium meant for a freely 
floating ship. Now we want to be able to determine the new static equilibrium condition after 
changing the weight distribution on a ship. 
 
An altered weight distribution will cause the Center of Gravity (G) to move. To fully identify the 
location of G before and after its movement, we must be able to reference it in space in the 3 
Cartesian directions. As with the other centroids, the location of G is referenced vertically to the 
keel (KG) or the Vertical Center of Gravity (VCG), transversely to the centerline with the 
Transverse Center of Gravity (TCG) and longitudinally to either of the perpendiculars or 
midships with the Longitudinal Center of Gravity (LCG). Recall that the correct sign convention 
is negative to port of the centerline and aft of midships. 
 
The weight distribution on a ship can change whenever... 

• A weight is shifted in any one of three separate directions 
• A weight is added or removed from anywhere on a ship 
• By some combination of the above. 

 
At first, determining the effect of any of these changes upon the location of G may seem 
overwhelming. However, it is manageable if we break it down into a study of three separate 
directions and then further break it down into shifts, additions, and removals in each of these 
directions. This process will be stepped through over the following pages. 
 
Think of how practical this study of hydrostatics could be. On a ship the distribution of weight is 
constantly changing and it would be desirable to know the final static equilibrium position of 
your ship after these changes. If these final conditions are undesirable the captain can take 
actions to avoid or minimize the effects. 
 
Student Exercise: With the help of your instructor make a list of ways weight is distributed 

differently over time from planned and unplanned evolutions: 
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3.2.1 Qualitative Analysis of Weight Additions, Removals and Shifts  
 
Shifting, adding or removing weight on a ship changes the location of G on a ship.  It is 
important for you to qualitatively understand which direction the center of gravity will move 
when weight is shifted, added or removed from a ship. This can help in the understanding and as 
a check upon the quantitative work that follows. 
 
 
 3.2.1.1 Weight Addition   
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When weight is added to a ship the 
average location of the weight of the ship 
must move towards the location of the 
weight addition. Consequently, the Center 
of Gravity of the ship (G) will move in a 
straight line from its current position 
toward the center of gravity of the weight 
(g) being added. An example of this is 
shown in Figure 3.3. 
 
 

 
Figure 3.3 – The Effect of a Weight 
Addition Upon the Center of Gravity of a 
Ship 

 
3.2.1.2 Weight Removal  
 
When weight is removed from a ship the 
average location of the weight of the 
ship must move away from the location 
of the removal. Consequently, the 
Center of Gravity of the ship (G) will 
move in a straight line from its current 
position away from the center of gravity 
of the weight (g) being removed. See 
Figure 3.4. 
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Figure 3.4 – The Effect of a weight Removal Upon 
the Center of Gravity of a Ship. 
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3.2.1.3 Weight Shift  

 
 
 

 When a small weight is shifted onboard 
a ship the Center of Gravity of the ship 
(G) will move  in a direction parallel to 
the shift 

W 

B L 
C L 

K 

gf 

go 

W Gf 

Go 

WL 

 but through a much smaller  distance. G 
will not move as far as the weight being 
shifted because the weight is only a small  
 fraction of the total weight of the ship. 
An example of this is shown in Figure 
3.5. 
 
 
 
 
 
 
 
 
 

Figure 3.5 – The Effects of a Weight Shift on the 
Center of Gravity of a Ship 

An explanation of this can be provided 
by the way a weight  

LC  

L B K 

W 

W Gf 

Go 
G1 go 

shift can be modeled. A weight shift can 
be considered as a removal of a weight 
from its previous position and the 
addition of a weight at its new position.  
Figure 3.6 demonstrates this principle   
using the rules governing weight    
additions and removals discussed   
previously. 

gf 

 
Having established some qualitative 
rules, we are now in a position to 
quantify the magnitude of any 
movement in G.  Remember, we shall 
break the problem down into the 3       
Cartesian directions. 
 

Figure 3.6 – A Weight Shift Being Modeled as a Weight 
Removal Followed By a Weight Addition 
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3.2.2 Vertical Changes in the Ship’s Center of Gravity Due to Weight Shifts, Weight 
Additions, and Weight Removals.  
  
As stated previously, the Center of Gravity of a ship (G) is the point at which the all the mass of 
the ship can be considered to be located. It is the point at which the gravitational forces acting on 
the ship may be resolved to act. G is referenced vertically from the keel of the ship (K). The 
distance from K to G is labeled KG with a bar over the letters to indicate it is a line segment 
representing a distance. It is important to keep track of the vertical location of G to predict 
equilibrium conditions, in particular it has a considerable bearing on the initial and overall 
stability of a ship. 
 
      An alternative way of naming the distance KG is to call it the vertical center of gravity   
      from the keel (VCG). ! 
 
 
3.2.2.1 Weight Addition  
 
Let us consider the situation 
where a weight is added 
vertically above G on the 
centerline of the ship. This 
situation is displayed at Figure 
3.7. We already know from a 
qualitative analysis that G will 
move directly towards the 
location of the weight addition, 
so in this instance, it will move 
vertically from Gold to Gnew. 
What remains is to quantify the 
magnitude of this movement. 
 
There are 2 techniques that can 
be used to accomplish this. One 
involves taking moments about 
a reference point (in this case 
the keel), and the other uses a 
weighted average technique. Let 
us consider the weighted 
average technique first as it is 
similar to approaches discussed 
in chapters 2 and 3. 
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Figure 3.7 - A Weight Addition Vertically above G 
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• Weighted Average    The KGnew of the ship can be calculated by doing a weighted 
average of the distances from the keel to Gold and g with a weighting factor based on a 
weight ratio.  This relationship is shown in the equation below and it is specifically for 
the addition of one weight in the vertical direction. 

news

a
a

news

olds
oldnew

w
gKGKGK

∆
+

∆

∆
=  

 

news

aaoldsold
new

wgKGK
GK

∆

+∆
=  

 
 

 where: KGnew   is the final vertical position of the center of gravity of the ship as 
referenced from the keel (ft). 

  KGold   is the initial vertical position of the center of gravity of the ship as 
referenced from the keel (ft). 

  ∆S new  is the final displacement of the ship (LT). 
  ∆S old   is the initial displacement of the ship (LT). 
  Kga   is the vertical position of the center of gravity of the weight being 

added as referenced from the keel (ft). 
  wa   is the weight of the added weight (LT). 
 

• Moments about the keel   Alternatively, the same equation can be derived by taking 
moments about the keel in the vertical location and balancing the situation by equating 
the total moment before the addition with the total moment afterwards. 

New Total Moment ' Old Total Moment % Changed Moment

¯KGnew ∆s new ' ¯KGold ∆s old % K̄ga wa

¯KGnew '

¯KGold ∆s old % K̄ga wa

∆s new

 
 Those purists amongst you will realize that there is no moment being applied at the keel 

because the line of action of all weight vectors passes through the keel. These worries can 
be removed by including a sin φ term in each moment expression which will account for 
the horizontal component of these forces about the keel. As there will be a sin φ term in 
each moment expression, they cancel leaving the expression above. If you are still uneasy 
with this, use the weighted average technique. 

! 
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3.2.2.2 Weight Removal  
 

wr In a similar manner to the weight addition example, let us 
consider what will happen if a weight is removed from a 
position above G and on the centerline. Qualitatively, we 
know G will move directly away from the weight removal, 
moving from Gold to Gnew. Hence we would expect that 
KGnew would be less than KGold. Figure 3.8 displays this 
situation. 

gr 

WL 
kgr

Gold 

 Gnew KGold KGnew Once again, the magnitude of KGnew can be determined 
using either weighted averages or by taking moments a
the keel. However, since in this case the weight is being 
removed, the correct sign for the weight is negative to 
show that it is being removed. 

bout 
K 

C L 

Figure 3.8 – A Weight 
Removal Vertically Above G 
 

• Weighted Average       The equation for KGnew after a single vertical weight removal is 
shown below: 
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∆
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 where: Kgr  is the vertical position of the center of gravity of the weight being 

removed as referenced from the keel (ft). 
  wr is the weight of the removed weight (LT). 
 

• Moments about Keel      By equating moments before and after the weight removal the  
same equation can be derived. 
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3.2.2.3 Weight Shift  
 
Let us now discuss a single vertical weight shift. We have already seen that one can model a 
vertical shift as the removal of a weight from one position and the addition of the same weight at 
a new position. If we view it this way we can combine the equations for a vertical weight 
removal and addition to quantify this scenario.  The formulation below shows this combination. 
Notice that the negative sign attached to wr has been moved to make the whole removal term 
negative. 
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Since the weight removed is the same weight added and therefore is equal in magnitude, the 
above equation can be re-written as: 
 

news

raoldsold
new

gKgKwGK
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∆

−+∆
=
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For this specific case of a single weight shift the final displacement of the ship will be equal to 
the initial displacement because you are subtracting and adding the same weight. 
 

oldsaroldsnews ww ∆=+−∆=∆  
 
 

Combining the above equations, finally yields: 
 

olds

raoldsold
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=
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Algebraically rearranging the preceding equation yields a very different looking equation to 
describe the final location of the center of gravity of a ship after a single weight shift: 
 

)( raoldsoldoldsnew gKgKwGKGK −+∆=∆  
 

( ) )( raoldnewolds gKgKwGKGK −=−∆  
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Figure 3.9 shows the line segments described by the previous equation. We can rewrite the terms 
in parenthesis by defining two new line segments. The distance from the initial center of gravity 
of the ship (Gold) to the final center of gravity of the ship (Gnew) will be defined as line segment 
(GoldGnew ). The distance from the initial center of gravity of the weight (gr) to the final center of 
gravity of the weight (ga) will be defined as line segment (grga).  
 

 

wa 

ga 

WL Gnew 

grga GoldGnew kga 
KGnew Gold wr 

gr 
KGold kgr 

K 
C L 

 
Figure 3.9 – A Single Vertical Weight Shift 

 
 

Using these line segments, the preceding equation takes on the form: 
 

     ( ) )( raoldnewolds gKgKwGKGK −=−∆  
 

raoldnewolds ggwGG =∆  
 
 
Remember the equation above is a very specific equation that only applies to a single vertical 
weight shift onboard a ship.  Do not attempt to use this equation for any other case! 
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3.2.2.4 General Vertical Weight Shift, Addition and Removal Equation  
 
At this point we are ready to write the most general equation to quantify all combinations of 
vertical shifts, additions, and removals of weight. The user should use a plus sign when weight is 
added and a minus sign when weight is removed. The summation should have as many plus 
terms as there are weights added and as many minus terms as there are weights removed. The 
equation is shown below: 
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In applying this equation always write out the summation terms fully showing each individual 
term used. This is necessary so that another engineer can see the specific terms you are using and 
to check your work. 
 
 After you calculate a new position for the center of gravity you should qualitatively check 

your answer to ensure it is reasonable. For example: ! 
 
  Suppose your old KG is 18 feet and a fuel tank has a Kg of 14 feet. After 

“steaming” for some time the fuel tank is half empty.  Suppose that you are given 
all the numbers you need and you know how to calculate a final KG of the ship. 
Suppose you come up with a final KG of 15 feet. Immediately you should know 
you made a mistake because removing weight below the existing center of gravity 
of the ship should cause the center of gravity of the ship to rise. Your answer 
should have been something greater than 18 feet! 

 
  You can also check the magnitude of the change. Suppose you calculated a new 

KG of the ship to be 100 feet.  Again you should immediately know you made a 
mistake because this is much too large a change. 

 
The moral of this story is always check your final answer. This implies you have a 
qualitative understanding of the physical processes involved in the calculation of the 
number! In exam, test and quizzes, you will be graded more when you show a qualitative 
understanding than simply submitting an answer which is obviously incorrect. 
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Example 3.2 An FFG-7 class frigate has an initial displacement of 4092 LT and an initial 
vertical location of the center of gravity of the ship of 18.9 feet above the keel. If 200 LT are 
added 10 feet above the keel, and 75 LT are removed 20 feet above the keel, what is the new 
vertical location of the center of gravity of the ship? 
 
Solution: 

arolds

aarroldsold
new ww

wgKwgKGK
GK

+−∆

+−∆
=   

 

LTLTLT
LTftLTftLTftGK new 200754092

)200()10()75()20()4092)(9.18(
+−

+−
=  

 

ft
LT

LTftGK new 5.18
4217

77839
=

−
=  

 
 
Remember: Always check your final answer for reasonability and consistency of units.   
 
  In this example, the final answer is reasonable in both the direction and magnitude 

of change. 
 

 We would expect the final KG to be a smaller number since both the 
addition and removal lower the center of gravity of the ship. Adding the 
200 LT below the initial center of gravity of the ship should cause the 
center of gravity of the ship to move lower towards the weight added. 
Removing the 75 LT above the initial center of gravity of the ship should 
cause the center of gravity of the ship to move lower away from the 
weight removed.   

 
 The direction and magnitude of the change are both reasonable.   

 
 The units of the final answer are consistent with the parameter being 

found.  
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3.2.3 Transverse Changes in the Ship’s Center of Gravity Due to Weight Shifts, Weight  
Additions, and Weight Removals.  

  
Recall the transverse direction is the “side to side” direction  (or the port to starboard direction).  
The centerline of the ship separates the port from the starboard. Recall that distances to the port 
are defined to be negative, and distances to the starboard are positive. In general, we use the 
symbol “y” as the general variable to represent a transverse distance from the centerline of the 
ship. Other names you might here in referencing this direction are “half breadth” and 
“athwartships”. 
 
Qualitatively, we know that should a weight be added or removed off center (not on the 
centerline) or a weight is shifted transversely across the ship, the ship will assume some angle of 
inclination. This angle is called an angle of “List”. A List is the condition where the ship is in 
static equilibrium and down by the port or starboard side. In other words, the ship is not level in 
the water from side to side. The list angle is created because the weight change has resulted in 
the Center of Gravity (G) of the ship to move from the centerline. There are no external forces 
acting on the ship to keep it down by the port or starboard. The angle is maintained because the 
resultant weight and buoyant force are vertically aligned as shown in Figure 3-2 and Figure 3-10. 
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Figure 3.10 – The Locations of G and B for a Listing Ship 
 

The off center G causes a moment to be created within the ship that causes it to rotate. As the 
ship rotates, the underwater volume changes shape which causes the Center of Buoyancy (B) of 
the ship to move. At small angles of list, B moves in an arc, centered at the transverse metacenter 
(M). It continues to move until the shape of the underwater volume causes B to move directly 
vertically underneath G, causing the ship to be back in static equilibrium. 
 
 The concept of the metacenter and B movement will be discussed in greater detail later in 

this chapter. ! 
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3.2.3.1 Measurement in the Transverse Direction  
 
The amount of list is usually measured in degrees of incline from the level condition.  When the 
ship lists to port the angles are assigned negative values and when the ship lists to starboard the 
angles are assigned positive values. In general, we use the symbol “φ” (phi) as the general 
variable to represent an angle of inclination to the port or starboard side. 
 
The center of gravity (G) is referenced in the transverse direction from the centerline of the ship. 
The distance from the centerline of the ship to the center of gravity of the ship is called the 
transverse center of gravity (TCG) and is measured in units of feet. 
 
 
3.2.3.2 Quantitative Analysis  
 
The final TCG after a transverse weight change can be quantitatively determined by using a 
weighted average equation or by equating moments about the centerline before and after the 
change in a similar manner shown for vertical changes of weight. The equation takes on the same 
form as previously discussed with two differences.   
 

• The first difference is that the KG terms have been replaced with TCG since we are 
working in the transverse direction.   

 
• The second difference is that distances to port must have a negative sign.  In the vertical 

case all distances were positive since the reference point was the keel. In the transverse 
case the reference point is the centerline so that the TCG can be either negative or 
positive. 

 
 
3.2.3.3 Generalized Equation  
 
The generalized equation for changes in the transverse center of gravity due to shifts, additions, 
and removals is: 
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 where: TCGnew is the new transverse position of the center of gravity of the ship as 
reference from the centerline (ft). 

  TCGold  is the old transverse position of the center of gravity of the ship as 
reference from the centerline (ft). 

  ∆s new   is the new displacement of the ship (LT). 
  ∆s old   is the old displacement of the ship (LT). 
  Tcgi   is the transverse position of the center of gravity of the weight 

being added or removed as referenced from the centerline (ft). 
  wi    is the individual weight added or removed (LT). 
 
In applying this equation always write out the summation terms fully showing each individual 
term used. This is necessary so that another engineer can see the specific terms you are using and 
to check your work. 
 
 
3.2.3.4 Weight Shift  
 
The transverse weight shift is a specific case that results in an interesting simplification of the 
generalized transverse weight equation.  We will apply the generalized equation to a single 
transverse weight shift from some old transverse position to some new transverse position. The 
old and new positions could be port to starboard, starboard to port, port to less port, port to more 
port, starboard to less starboard, and  starboard to more starboard.  Remember the sign 
convention: distances are negative to port and positive to starboard of the centerline. 
 
Just as in the single vertical weight shift, the single transverse weight shift can be modeled as a 
removal of the weight from the old position and the addition of the same weight to the new 
position.  Applying the generalized equation to this specific case yields: 
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Since the weight removed is the same weight added and therefore is equal in magnitude the 
equation above may be re-written as: 
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For this specific case of a single weight shift the final displacement of the ship will be equal to 
the initial displacement because you are subtracting and adding the same weight. 
 

oldsaroldsnews ww ∆=+−∆=∆  
 
Simplifying with the preceding equations results in the following expression: 
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Algebraically rearranging the expression above results in a very different looking equation that 
describes the final location of the center of gravity of a ship after a single weight shift.  This is 
shown below: 
 

)( raoldsoldoldsnew TcgTcgwTCGTCG −+∆=∆  
 

( ) )( raoldnewolds TcgTcgwTCGTCG −=−∆  
 
Just as we did in the vertical case, we can define a new distance from the initial center of gravity 
of the ship (Gold) to the final center of gravity of the ship (Gnew ) as line segment (GoldGnew ) and a 
new distance from the initial center of gravity of the weight (gr) to the final center of gravity of 
the weight (ga ) as line segment (grga). Using these line segments, the preceding equation takes 
on the form shown below: 
 

( ) )( raoldnewolds TcgTcgwTCGTCG −=−∆  
 

raoldnewolds ggwGG =∆  
 
Remember this equation is very specific and only applies to a single transverse weight shift 
onboard a ship. Do not attempt to use this equation for any other case! 
 
 
 None of the equations in this text should be memorized.  You will easily be able to 

derive the equation you need for your specific problem if you understand the 
concepts.  You will get very proficient at writing down the generalized equation “on 
the fly” once you have internalized the fundamental concepts. 

! 
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Example 3.3: An FFG 7 ship has a displacement of 4092 LT, and an initial transverse center of 
gravity 2 feet starboard of the centerline. A 75 LT weight is moved from a position 10 feet port 
of the centerline to a position 20 feet port of centerline and a 50 LT weight is added 15 feet port 
of the centerline. What is the final location of the ship's transverse center of gravity? 
 
Solution: 
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3.2.4 Combining Vertical and Transverse Weight Shifts  
 
Fairly obviously, it is very rare for a weight change to occur on board a ship that results in only a 
vertical movement of G or only a transverse movement of G. Usually, a weight change will 
result in both. Figure 3.11 shows an example with a weight addition. 
 
Qualitatively, we know that G will move directly towards the location of the added weight.  In 
this example, it results in an increase in KG and a TCG starboard of the centerline. Theoretically, 
it should be possible to calculate the new location of G in one step. However, significant 
simplification is achieved by breaking the problem down into the vertical and transverse 
directions. 
 
The steps for carrying out an analysis of this situation would be: 
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Figure 3.11 – Combining Vert

Weight Change
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3.3 Transverse Metacentric Radius and the Transverse Metacentric Height  
 
Figure 3.12 shows a typical sectional view of a ships hull when the ship is floating level in the 
water with no list or trim. The important points for hydrostatic calculations are the keel (K), the 
center of buoyancy (B), the center of gravity (G), and the transverse metacenter (MT). 
 
 
3.3.1 The Metacenter 
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C
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Figure 3.12 – Important Locations and Line Segments used in Hydrostatic Calculations 
 
 
The metacenter was briefly introduced in Section 2.10. It was stated there that the metacenter is a 
convenient reference point for hydrostatic calculations at small angles. Recall, there is one  
metacenter associated with rotating the ship in the transverse direction (MT) and another one 
when rotating the ship in the longitudinal direction (ML). It was pointed out that the transverse 
metacenter is on the order of 10 to 30 feet above the keel whereas the longitudinal metacenter is 
on the order of 100 to 1000 feet above the keel. 
 
The metacenter is a stationary point for small angles of inclination. We define “small” to be less 
than 10 degrees. This is the reason the metacenter and the geometry derived here is only 
applicable to small angles of inclination. Beyond ~10 degrees the location of the metacenter 
moves off the centerline in a curved arc. 
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3.3.1.1 Metacentric Radius  
 
To locate the metacenter for small angles requires the construction of two lines. The intersection 
of these lines defines the location of the transverse metacenter. The first line is the line of action 
of the buoyant force when the ship is upright with no list. The second line is the line of action of 
the buoyant force when the ship is inclined a small amount.   
 
When a ship is inclined at small angles (10 degrees), the center of buoyancy (B) moves in an arc. 
The center of this arc is the transverse metacenter (MT). Picture in your mind a piece of string 
attached to the metacenter at the top and to the center of buoyancy at the other end. This is why 
the distance from  the  metacenter (M) to the center of buoyancy (B) is called the transverse 
metacentric radius (BMT).  The metacentric radius is a line segment measured in feet and it is a 
commonly  used parameter in naval architecture calculations. 
 
 
3.3.1.2 Metacentric Height  
 
Another important line segment used in naval architecture calculations is the distance from the 
center of gravity (G) to the transverse metacenter (MT). This line segment is called the transverse 
metacentric height (GMT). As we shall see in the next chapter, the magnitude and sign of the 
metacentric height will reveal how strongly the ship will want to remain upright at small angles. 
The importance of this parameter will be made clear in the next chapter. 
 
 
3.3.2 Calculations  
 
Very often in the calculations you will be doing you will need the distance between two of the 
points shown on Figure 3.12. It is often the case that you know some of the distances but not 
others. To find any other distance you need, simply draw a quick sketch of Figure 3.12 and use 
your sketch to see the relationships between what you know and don’t know.    
 
For example, to find KG you could subtract  KM - GMT.  KG is the line segment that gives the 
vertical distance to the center of gravity from the keel. The line segment KMT is the “transverse 
metacentric height above the keel”. You may recall that it can be found on the curves of form if 
you know the mean draft of the ship. We will see later in this chapter that the GM of a ship can 
be experimentally measured by doing an inclining experiment. 
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3.3.2.1 Advanced Calculations      (OPTIONAL)  
 
To obtain the values of KM in the curves of form, KB is added to BM. Recall that KB can be 
calculated by numerical integration of the table of offsets as was shown in Section 2.9.5. BM is 
related to the second moment of area of the waterplane and can be calculated by the following 
equation. 
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(the derivation of this equation is beyond the scope of this introductory course) 

 
 where: y is the half breadth distance (ft). 
  ydx is the area of the differential element on the operating waterplane (ft2). 
  ∇s  is the submerged volume of the ship’s hull (ft3). 
  IT   is the second moment of the operating waterplane area in the transverse 

direction with respect to the “x” axis (ft4). 
 
 
 Physically the second moment of area in this case is a measure of the rotational 

resistance.   The second moment of area is a “strong” function of the width of the ship 
since it proportional to the half-breadth cubed. In general this tells us that a wider ship 
will be harder to roll.  

! 
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3.4 Calculating the Angle of List for Small Angles After a Transverse Shift 
of Weight  
 
For small angles of list (<10 degrees) we can easily relate the transverse shift in the center of 
gravity of the ship to the angle of inclination. The theory and derivation developed here are 
necessary components of the inclining experiment discussed in the next section. 
 
 
3.4.1 Theory  
 
As discussed previously, when the center of gravity of the ship shifts away from the centerline 
there is an instantaneous misalignment of the resultant weight of the ship with the resultant 
buoyant force.  This causes a moment, rotating the ship to the side the shift occurred to. As the 
ship inclines the submerged volume changes form, resulting in a new location of the centroid of 
the underwater volume formed by the hull.  The ship will continue to rotate until the centroid 
shifts far enough to once again be in vertical alignment with the line of action of the resultant 
weight of the ship. 
 
To keep the following derivation simple we will assume that we always start with a ship that has 
no initial list so that the initial transverse center of gravity is zero feet. In other words, the initial 
center of gravity will lie on the centerline of the ship. We will label this point “G0". The final 
transverse center of gravity will be the distance from the centerline to a point we will label “Gt”.   
 
 
3.4.2 Diagram  
 
The first thing we must do is to draw a typical cross section of a ship’s hull inclined as a result of 
a transverse weight shift in the center of gravity. Figure 3.13 shows the inclined hull with the 
location of all the key points for our derivation. Additionally, the resultant weight of the ship, the 
resultant buoyant force, and the waterline are also shown. 
 
You must be able to understand this diagram and be able to draw it without the use of your notes. 
If you understand the concepts it will be very easy to do so. 
 
 
 Do not attempt to blindly memorize the diagrams in this text. They must be 

constructed using the fundamental concepts in a logical progression of thought.  
Further, you should practice drawing each figure because it takes a little artistic 
skill to do them correctly. 

! 
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3.4.3 Relationship  
 
Once you have sketched Figure 3.13 the derivation of the relationship between the “shift in the 
center of gravity of the ship” and the “angle of inclination” is evident.  Notice the right triangle 
formed by the points (MTG0G1).  The line segment G0G1  is opposite from the angle of 
inclination.  The metacentric height (G0MT) is adjacent to the angle of inclination.. The opposite 
side over the adjacent side of a right triangle defines the tangent of the angle. Solving for (G0G1) 
yields: 
 

ϕtan010 TMGGG =  
 
Substitution of the above expression into the equation for a single transverse weight shift yields: 
 
 

twggwGGs ==∆ 1010  
 

twMG ts =∆ ϕtan0  
 
 
 where: t is the distance the weight is shifted (g0g1) 
 
 
This is the relationship we sought. It relates the transverse shift in the center of gravity of a ship 
to the angle of inclination for angles less than 10 degrees. This is the basic relationship used in 
the inclining experiment in the very next section. 
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3.5 The Inclining Experiment   
 
The goal of the Inclining Experiment is to use small angle hydrostatics to compute the vertical 
center of gravity of a ship as referenced from the keel (KG).  The basic process of an inclining 
experiment is straight-forward. A known weight (wi ) is moved a known transverse distance (ti).  
This transverse weight shift causes a transverse shift in the center of gravity of the ship, which in 
turn causes the ship to list to the side of the weight shift. The amount of weight used (wi) , the 
distance it is shifted (ti) , and the resulting angle of list (φi) are measured and recorded. The 
process is repeated moving different weights different distances, port and starboard, causing port 
and starboard angles of list. This yields sets of  (wi , ti , φi)  data were the subscript “ i ” is just a 
counting variable. 
 
However, before this process can begin, the ship has to be prepared for the experiment. The 
experiment is conducted alongside, in calm water with the ship free to list. It is usually 
performed with the ship in its light-ship condition. The light-ship displacement (∆light) is defined 
by Gilmer and Johnson as: 
 

“the weight of the ship complete in every respect, including hull, 
machinery, outfit, equipment, water in the boilers at steaming 
level, and liquids in machinery and piping, but with all tanks and 
bunkers empty and no crew, passengers, cargo, stores, or 
ammunition on board.” 

      Introduction to Naval Architecture, p131. 
 
It is necessary to determine the displacement of the light-ship (∆light). This is achieved by 
observing the fwd and aft draft marks and consulting the ship’s curves of form. In this step it is 
also important to find the density of the water the ship is floating in so that a correction can be 
made to the displacement read from the curves of form for the true water density. 
 
Once the ship has been prepared, the inclining weights and apparatus are brought on board. 
Typically, the inclining weights are approximately 2% of the displacement of the light-ship 
(∆light). With the inclining weights and apparatus on board, the ship is said to be in an inclined 
condition. All quantities are then given the inclined suffix. For example ∆incl , KGincl . 
 
With the inclining weights and equipment on board, the experiment can then proceed as 
described above. This often requires a great deal of co-ordination and the use of riggers etc. For 
larger ships, it is common to use a crane to move the inclining weights from and to different 
transverse locations. 2% of the displacement of a ship is a considerable weight to move. 
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3.5.1 Finding G0MT inclined  
 
The equation to find list angle from a single transverse weight shift is expressed in terms of the 
metacentric height (G0MT) as: 
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Any one set of  (wi , ti , ϕi ) could be used in this equation to find a value for the inclined 
transverse metacentric height. Each set should yield the same value of metacentric height for 
small angles. However, there are experimental errors and deviations from the ideal that will yield 
a slightly different value for each set of (wi , ti , ϕi ) used.  
 
To achieve an average value for the transverse metacentric height (G0MT) the slope from a graph 
of “tangent of the inclining angle” (tan ϕi) versus the “inclining moment” (wi ti) is calculated. 
See Figure 3.14. The first group of parameters in the equation above is the slope of this graph. 
By dividing the slope by the displacement of the ship, the average value of G0MT is obtained as 
shown below:  
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Figure 3.14 – A Typical Plot of Data from an Inclining Experiment 
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The slope is calculated by picking any two points on the line of best fit and doing a change in “y” 
over a change in “x” calculation. Be sure to pick points on the line of best fit! A common student 
mistake is to use the original data points to calculate the slope. It is possible that none of these 
data points will be on the line you have drawn, the line represents the average of the data! An 
advantage of analyzing the data in this manner is that one stray data point can be “thrown out” or 
“ ignored” as a bad point.   
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 There is also a mathematical technique to do the linear regression called “least squares”.  

The mathematical technique is less subjective since no matter who does the calculation it 
will yield the same results. The linear regression by the least squares method can be 
easily done with a spreadsheet program on a computer. The computer will give the entire 
equation of the straight line to many decimal places. This technique minimizes the sum of 
the “squares of the error” between each data point and the line, thus the name least 
squares method. 

! 

 
Obtaining the average value of the transverse metacentric height (G0MT) is not the objective of 
the inclining experiment. Keep in mind the objective is to find the vertical location of the center 
of gravity of the ship without inclining gear aboard (KGlight). Two more steps are required once 
the average value of G0MT is obtained. 
 
3.5.2 Finding KGincl and Correcting this for the Removal of Inclining Apparatus  
 
The first step is find the vertical location of the center of gravity of the ship with the inclining 
gear on board by subtracting the average metacentric height from the value of KMT. The value of 
KMT is found on the curves of form as a function of mean draft. 
 

TTincl MGKMKG 0−=  
 
The second step is to calculate the vertical location of the center of gravity of the ship without 
the inclining weights aboard (KGlight). This is accomplished by doing a weight removal 
calculation as explained earlier in Chapter 3.  
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3.5.3 Inclining Experiment Practicalities  
 
The inclining experiment is easily 

Scale
Plum bob initial

Mast

Plum bob final

Figure 3.15 - The Measurement of “tan φ” during an
inclining experiment.

performed on a ship and it is likely that 
 you will see it carried out or be a part of 
 the evolution sometime in your career. 
 
The tangent of the inclining angle for  
each placement can be measured by 
attaching a “plum bob” on a long wire 
suspended from a tall mast. The plum 
bob will always hang vertically 
downward and perpendicular to the 
waterplane. This plum bob can be used 
to measure the number of inches of 
deflection the bob makes when the ship 
is inclined from the level position. 
Figure 3-15 shows the right triangle 
formed by the mast, wire and horizontal 
scale.  The tangent of the inclining angle 
can be calculated from this right triangle 
by dividing the deflection distance by 
the length of the wire as shown below: 
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These are the more common problems in doing an inclining experiment: 
 

• Keeping track of all the weights onboard before and during the evolution. 
 
• The presence of liquids in less than full tanks creates errors in the measurements.  The 

shift in the fluid in a less than full tank creates a virtual rise in the center of gravity of the 
tank.  This is called the “free surface effect” and it will be discussed in Chapter 4. 

 
• The test must be done in calm conditions.  (Test not done at sea.) 

 
• Potentially dangerous in that adding weights high on a ship reduces stability and/ or the  

deck may not be able to support the inclining weights.  Additionally, moving large 
weights creates a safety concern to personnel involved.  (These concerns are evaluated 
before the procedure ever takes place.) 

 
 
 
 

 3 - 32



Example 3.4: A ship undergoes an inclining experiment resulting in a graph of “the tangent of 
the list angle” versus “the inclining moment” (similar to Figure 3-14) with a slope 
of  28591 ft-LT. The displacement is 7986 LT and KM = 22.47 ft.  What is the 
KG of the ship without the inclining gear aboard if the center of mass of the 
inclining gear is 30 feet above the keel with a weight of  50 LT? 

 
Solution: 
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3.6 Longitudinal Changes in the Ship’s Center of Gravity Due to Weight 
Shifts, Weight Additions, and Weight Removals.  
  
So far we have calculated vertical and transverse weight shifts, weight additions, and weight 
removals. In this section we will look at longitudinal weight shifts, weight additions, and weight 
removals. Longitudinal problems are done in a different manner because we are usually not 
concerned with the final position of G, but the new trim condition of the ship. 
 
The consequence of longitudinal shifts, additions, and removals of weight is that the ship 
undergoes a change in the forward and after drafts. When the forward and after drafts have 
different magnitudes the ship is said to have trim. Recall from Chapter 2, that trim is defined by 
the difference between the forward and after drafts.  
  
     Trim = Taft - Tfwd     
 
If a ship is "trimmed by the bow," then the forward draft is bigger than the after draft.  A ship 
"trimmed by the stern" has an after draft bigger than the forward draft.  Recall that the ship 
rotates about the center of flotation (F) which is the centroid of the waterplane area. (It does not 
rotate about midships!)  When the centroid of the waterplane area is aft of midships the forward 
draft will change by a larger amount than the after draft. This is usually the case since a typical 
ship is wider aft of midships than forward of midships. 
 
The curves of form assume the ship is level with no trim, but they may be used for a ship in a 
trimmed condition, so long as the trim is not too large. If the ship is trimmed, the entering 
argument to the curves of form is the mean draft: 
 
     Tm  = (½)(Ta + Tf )     
 
The goal of a longitudinal problem is to determine the final drafts forward and aft given the 
initial drafts and a description of the weight shifts, weight additions, and weight removals that 
occurred. 
 
It is helpful in the modeling process to physically visualize the weight shift occurring.  Picture a 
large wooden crate on the weather deck of a ship that is being pushed more forward or more aft. 
Try to predict if the ship will go down by the bow or go down by the stern from your mental 
picture.   
 

• Notice it doesn’t matter what position the crate starts from on the ship only that it moves 
forward or aft.   

• Remember to visualize the weight shift.  Pushing a weight forward makes the bow go  
down and the forward draft increase.  Pushing a weight aft makes the stern go down and  
the after draft increase. Use this knowledge to determine when to add to or subtract from  
a draft. Additionally, test your final answer for reasonability and consistency. 
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3.6.1 Trim Diagram  
 
To quantify the changes in the forward and after drafts from a weight change requires an 
engineering analysis of the process. The analysis starts by developing a picture that shows all the 
geometric relationships that exist. This picture is developed logically in a step wise procedure. 
 
1. Draw a single horizontal line that represents the waterplane of the ship from the sheer 

plan view. The length of the line represents the length of the ship. 
 
 
 
 

Lpp 
 
 

2. Decide which end is the bow and which is the stern, label them.  Show the midpoint of 
the line and label it as midships.  

3. Show the center of flotation (F) and label it.  Normally assume it is located aft of 
 

 
     Ap            Fp 
 

Lpp 
 

      
 midships.  Dimension and label the distances from the AP to the center of flotation (daft) 
 and the FP to the center of flotation (dfwd).  
4. Show the weight change that is occurring and the new waterplane that would exist after 
 

    
   daft              dfwd 
 

 
     Ap         F         Fp 
 

Lpp 
 

   
 the weight change. To draw this correctly simply rotate your paper in a clockwise or  
 counter clockwise direction and draw a horizontal line through the center of flotation. By  
 rotating your paper you have the advantage of simulating the bow or the stern going  
 down and the water surface remaining level with the bottom of your desk. 
 
 In this example we will consider a weight shifted more aft. 
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5. Put your paper level again. Any distance above the first waterline is positive and any  
 
   daft              dfwd 
  

       W                     W 
δTaft                                                                                       l       

       
δTrim     Ap          F     Fp      δTfwd 

 
Lpp 

 
 
 
distance below is negative. According to this convention the after draft increased by a 
positive number which is consistent with what actually happens when weight is shifted more 
aft. Draw vertical lines from the ends of the first waterline to the second waterline forming 2 
similar triangles. Label those vertical distances with “δTaft” and “δTfwd”. 

 
6. Form the third similar triangle by drawing a third waterline parallel to the first and 

starting with the upper or lower most draft. The vertical leg of this third largest triangle 
should be labeled “δTRIM” since the change in trim is equal to the change in draft aft 
minus the change in draft forward (See note 3 below). Label the angle of trim with the 
symbol “θ”.    Avoid using  “ϕ” since that is used to express angles of rotation in the 
transverse direction.    

 
Each time a longitudinal problem is performed this diagram must be completed in full.  All 
the expressions that follow can only be written if you have a diagram. 
 
Note 1:  Notice what happens to the change in trim when the ship goes down by the stern.  

The change in draft aft is positive and the change in draft forward is negative.  
You’re subtracting a positive number minus a negative number to get a larger 
positive number. This is consistent with the idea that trim down by the stern is 
positive by convention. 

 
Note 2:  It is really not necessary to follow all the sign conventions in a formal sense if you 

use your diagram and a little common sense. The procedure has been written very 
formally here to show you that the sign conventions and definitions are consistent 
throughout. 

 
Note 3:  The following is the derivation of the “change in trim” equation. Recall a change 

in a property is always the final value of the property minus the initial value of the 
property. You can always find a change in any parameter using this definition. 
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3.6.2 Trim Calculation  
 
The starting equation to calculate the final draft forward or aft is based on an accounting concept. 
To find the final balance in a bank account you need to start with the initial balance, add the 
receipts  and subtract the debits. Similarity, the final draft forward (or aft) is equal to the initial 
draft forward (or aft) minus any decreases in the draft forward (or aft), plus any increases in the 
draft forward (or aft). 

sinkageorriseparalleltodueaftmomenttrimmingtodueaftoldaftnewaft

sinkageorriseparalleltoduefwdmomenttrimmingtoduefwdoldfwdnewfwd

TTTT

TTTT

δδ

δδ

±±=

±±=

 

 
 
We have discussed one way for the drafts to change, by a shift in a weight which creates a 
moment about the center of flotation (δT fwd due to wl  or  δTaft due to wl ). There are other ways to 
change the drafts forward or aft, specifically by adding and/ or removing weight. First, we will 
go over a single weight shift and then discuss adding and/ or removing weight. 
 
 To decide if the change in draft forward should be added or subtracted refer to your trim 
diagram and common sense. For example shifting weight forward increases the forward draft so 
the change in draft forward should be added making the final draft larger than the initial. Let’s 
call this first equation the “accounting equation”. It is shown by the preceding equations for the 
final forward draft and the final after draft. 
 

• The first term these equations are the initial drafts.  These are typically given as an initial 
condition of the problem.     

 
• The second term in these equations must be calculated by using the similar triangles 

shown by the diagram previously developed.   
 

• The third term in these equations will be found by dividing the weight added or removed 
by the TPI.   

 
• By looking at the trim diagram we can develop the following equation from the similar 

triangles.  
 

ppL
δδδ TRIM

d
T

d
T

fwd

wltoduefwd

aft

wltodueaft ==  

 
 
The magnitudes of the distances shown above are evident in the trim diagram.  If we can find the 
magnitude of the “change in trim” parameter we can solve for both the change in draft aft and 
forward due to the trimming moment “wl”.   
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The change in trim is found by dividing the moment creating the change in trim (wl) by a 
parameter called MT1". The MT1" has unit of LT-ft per inch and is on the curves of form as a 
function of mean draft. 
 

1
δ

′′
=

MT
lwTrim  

 
 

At this point you are ready to do any weight shift problem by drawing your picture and solving 
for the unknowns.  Note for a weight shift problem the last term in “accounting” trim equations 
is zero. 
 
Weight additions or removals are modeled as a two step process.   
 

• For a weight addition, step one is to assume the weight is added at the center of flotation.  
Step two is to assume the weight is moved from the center of flotation to the resting 
position of the weight.    

 
• For a weight removal, step one is to assume the weight is shifted from its resting position 

to the center of flotation.  Step two is to assume the weight is removed from the center of 
flotation.  

 
Weight additions require you to do all the work that you would do for a weight shift 
problem and to do one additional calculation.  The additional calculation is to find the 
change in draft aft or forward due to adding or removing weight at the center of flotation.  
Since the center of flotation is at the pivot point of a floating ship, adding or removing 
weight at this location only causes the ship to sink or rise in a “parallel” fashion.  In other 
words, there will be no change in trim, the after and forward drafts will change by the same 
amount.  The resulting waterline, after the addition or removal of weight from the center of 
flotation, is parallel to the original waterline.  This occurrence is called “parallel change” or 
in the case of weight addition “parallel sinkage”.   

! 

 
• The change in draft aft or forward due to adding or removing weight at the center of 

flotation (TPS ) can be found as shown below and it is the last term in “accounting” trim 
equation. 

 

TPI
wTPS =δ  

 
 Where: δTPS is the change in draft due adding or removing weight (in). 
  w is the amount of weight added or removed at the center of flotation (LT). 
  TPI  is the tons per inch immersion conversion factor (LT/in). 
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Exercise 3.5: An FFG7 is originally at a draft of 16.25 ft in level trim. 100 LT are removed 

from a location 75 ft forward of amidships. What are the final forward and after 
drafts? An FFG7 is 408 ft long and has the following characteristics: 

 
T (ft) ∆ (LT) TPI (LT/in) MT1" (ft-LT/in) LCF (ft)          

aft amidships 

16.00 3992 33.0 793.4 24.03 

16.25 4092 33.2 800.7 24.09 

 
   daft = 180’             dfwd=228’ 
  

                                  W=100 LT 
δTaft                                                                 l = 99’      

       
δTrim     Ap          F     Fp      δTfwd 

 
Lpp 
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3.7 Correction to Displacement for Trim      (Optional)  
 
The curves of form are calculated assuming a ship with zero trim. So long as the trim is not 
significant, most of the quantities found will be sufficiently accurate. 
 
Since the entering argument for the curves of form is mean draft, it will be useful to see what the 
effect of trim is on the displacement gained from the curves. The LCF is normally aft of 
amidships. If the ship trims by the stern, then the mean draft will be less than if the ship were in 
level trim. Therefore, you will enter the curves at a smaller draft and read a displacement smaller 
than the actual displacement. 
 

))(δ(δ 1 TrimftTmean
∆+∆=∆  

 
The correction to displacement for trim is made in the following manner: 
 where: δ∆ is the correction to displacement 
  ∆Tmean is the displacement read from the curves of form at the mean draft 
  δ∆1ft is the correction to displacement for a 1 ft trim read at Tmean on the curves  
   of form  
  Trim is the difference between the fore and aft drafts. 
 
 
Example 3.6: DDG51 has a mean draft of 20.75 ft and is trimming 1.5 ft by the stern.  What is 

the displacement? 
 

Draft (T) Displacement ∆ Corr. to Disp. for 1 ft Trim  

20.75 ft 8443 LT 31.1 LT/ft 

 
 
Solution: 
 
  δ∆ = (31.1 LT/ft)(1.5 ft)  = 46.7 LT 
 
  ∆ =  8443 LT  +  46.7 LT  =  8490 LT 
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3.8 Drydocking 
 
Due to the nature and complexity of repair and maintenance that must be performed on the 
underwater hull, openings, and sea-connected systems of ships, it is often necessary to perform 
this work in a drydock. The object of drydocking is to properly support the ship while it is out of 
the water.  There are three distinct phases to drydocking: preparation,  docking, and undocking.   
An error during any phase may lead to catastrophe: ship tilting, hull structural damage, damage 
to appendages, and possibly, personnel injury. 

 
• Preparation is critical to the success of all phases.  The Dockmaster and Docking Officer 

must carefully evaluate the type of ship to be docked and where to place the supports on 
the ship.  This task is accomplished by evaluating the ship’s lines plans, structural 
drawings, and all of the underwater appendages on the ship.  A Predocking Conference is 
held between the drydock and the ship to discuss plans, responsibilities, and procedures. 

 
• Docking is a slow, closely orchestrated evolution.  Once the dock is flooded above the 

blocks and the Docking Officer is ready, the ship is carefully pushed and/or pulled into 
the dock by tugs, workboats and dockside lines.  Once the ship is in the correct position 
over the blocks (this is often verified by divers) pumping of the drydock can commence.  
Landing the ship on the blocks is a critical step in this evolution and as such, it is 
carefully approached.  As the ship lands (usually stern first), part of the ship is supported 
by the blocks (P) and part of the ship is supported by the buoyant force.  This causes a 
virtual rise in the center of gravity and a decreased metacentric height. 

 

P
KGKMMG TTv −∆

∆⋅
−=  

MT     
∆ where:  GvMT =  virtual metacentric height of 

ship at current waterline WL 
      GV   P        = upward force exerted by the keel 

blocks 
    
      G B 

  KMT   = distance from keel to metacenter 
at the current waterline FB=∆-P K 

  KG     = distance from keel to center of 
gravity     

P 

  ∆       = displacement of waterborne ship 
at current waterline   Figure 3.16 – Stability in Drydock  

  ∆       = displacement of waterborne ship 
at current waterline   Figure 3.16 – Stability in Drydock  

    
If a list develops as the ship lands and continues to increase, pumping operations are 
stopped until the cause is found and corrected.  There is a possibility during landing that 
the ship may develop a negative metacentric height and capsize (this will be explained 
more in Chapter 4).  If all goes well, the ship lands on the blocks and work can start. 

If a list develops as the ship lands and continues to increase, pumping operations are 
stopped until the cause is found and corrected.  There is a possibility during landing that 
the ship may develop a negative metacentric height and capsize (this will be explained 
more in Chapter 4).  If all goes well, the ship lands on the blocks and work can start. 
  

• Undocking• Undocking can be just a precarious as the docking phase if not done carefully.  
Additionally, the hull and its openings must be tested for watertight integrity before the 
ship is floated and leaves the dock.  Undocking follows the same basic procedure as 
docking, but in reverse. 
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HOMEWORK CHAPTER 3 
 
Section 3.1  
 
Archimedes' Principle and Static Equilibrium  
 
1. State the necessary conditions for static equilibrium and show with a diagram how they 

apply to a free floating ship 
 
2. Calculate the gage pressure and absolute pressure 20 feet below the surface for both salt 

water and fresh water. Assume that the atmospheric pressure is at 14.7 psi. 
 
3. Calculate the resultant hydrostatic force being experienced by a box shaped barge 100 ft 

long 20 ft wide floating at a draft of 6 ft in salt water. How does this compare with the 
buoyant force (FB). 

 
4. At a draft of 23.5 feet, the underwater volume of a ship is 350,000 ft3. The ship is floating 

in salt water. What is its displacement in LT?  
 
5. The displacement of a CG47 class cruiser is 9846 LT. 

 
a. What is the underwater volume of the ship if it is floating in 59°F salt water?.  
 
b. What is the underwater volume if the ship is floating in fresh water at the same 

temperature? 
  

c. Explain the difference, if any, in terms of Archimedes Principle and static 
equilibrium. 

 
6.  A Marine landing craft can be approximated by a box-shaped, rectangular barge with the 

following dimensions: Length = 120 feet, Beam = 25 feet, and Depth = 7.5 feet. When 
empty the barge has a draft of 2.5 feet. You are the Combat Cargo Officer on an 
amphibious ship responsible for the safe loading of landing craft. 

 
 a.  The landing craft has a maximum safe draft of 5.25 feet. How many tons of cargo 

can be loaded without exceeding this draft? 
 

b.  An amphibious operation requires that the landing craft must cross a shoal that is 
150  yards from the beach. At high tide the charted depth at the shoal is 4.5 feet. 
How many tons of cargo can be loaded on the barge so that it will safely arrive at 
the beach and not run aground? 

 
 c.  The landing craft is loaded to a draft of 5 feet in salt water, and is going to a pier 

located in a fresh water river. At low tide the depth of water pierside is 5.5 feet. 
Will the boat ground itself at low tide? Why or why not? 
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Sections 3.2  
 
Vertical Shifts in the Center of Gravity  
 
7.  USS CURTS (FFG-38) is floating on an even keel at a draft of 15.5 feet, with KG = 19 

feet on the centerline. Lpp = 408 feet. When refueling the ship takes on 186 LT (60000 
gallons) of F-76 to a tank located on the centerline, 7 feet above the keel. Find the new 
vertical center of gravity after receiving fuel. 

 
8. USS SUPPLY (AOE-6) is underway in the North Atlantic preparing to UNREP  

ammunition and stores to the Battle Group. The ship is currently at a draft of 38 feet, and  
the center of gravity is located 33 feet above the keel on the centerline. Lpp = 734 feet. In  
preparation for the UNREP, 1000 LT of ammunition, fresh, and frozen stores are moved  
from a location 15 feet above the keel to the main deck, which is located 25 feet above  
the waterline. Determine the vertical location of the ship’s center of gravity after moving  
stores up on deck. 

   
9. USS CUSHING (DD-985) enters a shipyard for an overhaul.  As it entered the shipyard,  

the ship’s displacement was 7500 LT with KG = 19.7 ft, on the centerline. Lpp = 528 ft.   
During overhaul the following work was performed. 

 
Removed Items  Added Items 

Item Weight Kg  Item Weight Kg 

ASW Fire 
Control 

40.0 LT 19.0 ft  TLAM Fire 
Control 

50.0 LT 40.0 ft

ASROC 
Launcher 

18.0 LT 33.0 ft  Vertical Launch 
Sys 

29.0 LT 20.0 ft

Air Search 
Antenna 

5.0 LT 64.0 ft  GT Generator 11.5 LT 8.0 ft

  
1. Determine the ship’s displacement and KG after the overhaul. 

 
2. Determine the ship’s draft before and after overhaul 

 
 
10. USS THACH (FFG-43) departs Singapore for a seven day transit to Yokosuka, Japan.  

The ship got underway at a draft of 16.3 feet, with the center of gravity on the centerline,  
18.7 feet above the keel. Lpp = 408 feet. THACH departed port with 605 LT (195000  
gallons) of fuel. During the transit the ship burned 65% of its fuel. The fuel came from  
tanks located on the centerline, 5 feet above the keel. Determine the vertical location of  
the ship’s center of gravity upon its arrival in Yokosuka. 
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Vertical and Transverse Shifts in the Center of Gravity 
 
11. USS THOMAS S GATES (CG-51) has a displacement of 9600 LT, and KG = 23.19 ft.  

The TCG is on the centerline. 5 LT of water are shifted from a location 5 ft above the 
keel and 22 ft starboard of centerline to a location 5 ft above the keel and 10 ft port of 

ne. centerli  
 a.  What is the final KG? 
 
 b.  What is the final TCG? 
 
12. USS THORN (DD-988) is floating upright with a of displacement 9906 LT and KG = 

23.19 ft.  25 LT of equipment are added to the ship at an average location 30 ft above the 
keel and 8 ft starboard of the ship's centerline. 

  
a. What is the new KG? 
 

 b. What is the new TCG? 
 

c. This new location of G is unsatisfactory. At what transverse and vertical location  
would you add 20 LT of lead ballast to return to the destroyer’s original KG and  
TCG? 

 
13.  USS RUSSELL (DDG-59) is floating on an even keel at a draft of 20.5 feet. The center of 

gravity is located on the centerline, 21.3 feet above the keel. Lpp = 465 ft. 150 LT of 
machinery is removed from a location 10 feet above the keel, 17 feet to port of centerline. 

 
 a.  Determine KG after the machinery is removed. 
 
 b. Determine the ship’s new TCG after removing the machinery. 
  
 c.  Draw a diagram showing the ship in static equilibrium after the machinery has  

been removed. 
 
Section 3.3  
 
The Metacenter  
 
14. Define in terms of K, B, and G and show on a diagram: 
 

a. Transverse Metacentric Height (GMT) 
 
 b. Transverse Metacentric Radius (BMT) 
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15. Using the curves of form for the FFG7, determine its Transverse and Longitudinal 
Metacentric Heights (GMT & GML) when it is floating at level trim with a mean draft 
(TM) of 12.4 ft with KG = 19 ft. Why is GML much larger than GMT? 

 
Section 3.4 
 
Calculating the Angle of List  
 

16. A small weight is shifted from port to  
 starboard as shown on the Figure. Redraw the  
 figure showing the final positions of the  
 center of gravity (G), center of buoyancy (B),  
 the resultant weight of the ship (∆S ), the  
 resultant buoyant force (FB), the keel (K), the  
 transverse metacenter (MT).  Be neat, clearly  
 label, and use a straight edge where possible.  
 Assume the angle of list is small. 

 
17.  USS SIMPSON (FFG-56) is underway on an 

even keel at a draft of 16 feet. Lpp = 408 ft. KG = 20.2 ft on the centerline. After 4 hours 
of steaming the ship has burned 10000 gallons (31 LT) of fuel from a service tank located 
11 ft port of the centerline, 13 ft above the keel.  

 
 a.  Calculated the new KG and TCG. 
 
 b. Calculate the ship’s angle of list, 
  
 c. To refill the service tank, 10000 gallons (31 LT) of fuel are pumped from a  

storage tank located 5 ft starboard of the centerline, 9 ft above the keel to the port  
service tank. Determine the ship’s metacentric height and angle of list after  
transferring fuel. 

 
18. USS ENTERPRISE (CVN-65) is underway on an even keel at a draft of 38 feet. The  

ship’s center of gravity is located 36 ft above the keel on the centerline. Lpp = 1040 ft. In  
preparation for flight operations, V4 Division transfers 500000 gallons of JP-5 (ρfuel =  
1.616 lb s2/ft4) from tanks located 20 ft above the keel, 49 ft starboard of the centerline to  
tanks located 20 ft above the keel, 45 ft port of the centerline.  

 
a. Calculate the ship’s angle of list after the fuel transfer. 

 
b. In order to safely move aircraft, the ship cannot have a list greater than 1 degree.  

In order to return the ship to an even keel, how many tons of salt water ballast  
must the DCA add to tanks located 65 ft starboard of the centerline? 
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Section 3.5  
 
Inclining Experiments  
 
19. a. Given the diagram in Q 16 with a small weight shift from port to starboard, derive 

an expression for the metacentric height (GMT) in terms of the tangent of the list 
angle (tan ϕ), the displacement of the ship (∆S) , and the moment produced from 
the weight shift (wt). The starting line of your derivation should be... 

 

f

fooo
f

wtcgwtcgTCG
TCG

∆

+−∆
=  

 
(Note: A derivation is a series of steps that someone should be able to follow logically to 

the conclusion.  Show this derivation in detail.) 
 

b. What is the goal of doing an inclining experiment? 
 
 c. Show and explain how the equation derived in part “a” is used to obtain the stated 

goal of the inclining experiment in part “b”.   
 d. Where does the value KM come from and what are the units? 
 e. What is KM a function of? 
 
20. The fol  lowing data was taken on an inclining experiment: 

  Ship:  DD 963 
  Level trim, draft = 20.5 ft in the light ship condition 
  Inclining gear weighs 28 LT and is loaded 43 ft from the keel on the centerline 
 
  Inclining moment  List Angle 
  880 ft-LT (stbd)  2.3 deg stbd 
  528 ft-LT (stbd)  1.2 deg stbd 
  0    0.2 deg port 
  528 ft-LT (port)  1.5 deg port 
  880 ft-LT (port)  2.3 deg port 

 
Determine the location of the ship’s vertical center of gravity in the light ship condition. 

 
 
 
 

 3 - 46



Section 3.6  
 
Longitudinal Trim Problems  
 
21. A ship has a forward draft of 20 feet and an after draft of 21.6 feet.  What is the trim, both 

magnitude and direction?  What is the mean draft? 
 
22. USS OLIVER HAZARD PERRY (FFG-7) is preparing to enter drydock for overhaul. The 

ship is currently at a draft of 14 ft. KG = 21.5 ft on the centerline. Lpp = 408 ft. To enter 
drydock the ship must be trimmed 9 inches by the stern.  

 
a. To maintain the ship’s stability, the mean draft cannot change. What must be done 

to achieve the desired trim condition? 
 
 b.  To achieve the desired amount of trim, it is decided to transfer fresh water ballast 

from a tank located 106 ft forward of amidships to a tank located 75 ft aft of 
amidships. How many LT of water must be transferred? 

 
23. USS ARLEIGH BURKE (DDG-51) is originally in level trim at a draft of 21.00 ft.  180 

LT of equipment are moved from a position 90 feet aft of amidships to a position 100 feet 
fwd of amidships.  KG is 23.82 feet, and the length is 466 feet.  Draw a diagram showing 
the weight shift, longitudinal center of flotation, and the initial and final waterlines to 
find: 

  
a. Final forward and after drafts 

 
 b. Final mean draft 
 
24. USS SPRUANCE (DD-963) is floating with at a level trim of 21.25 feet.  Ship length is 

529 feet. 120 LT are added at a location 122 feet aft of amidships.  Draw a diagram 
showing the location of the weight added, the parallel sinkage, the final longitudinal 
center of flotation and the initial and final waterlines to find: 

  
a. Final forward and after drafts 
 

 b. Final mean draft 
 
25.  CVN-65 is underway on an even keel at a draft of 38 ft. Lpp = 1,040 ft and KG = 36 ft. In 

preparation for flight operations, the following aircraft are moved forward a distance of 
800 ft: 2 F-14 (69,000 lb each), 3 F-18 (48,000 lb each), and 1 E-2 (50,000 lb). Construct 
an appropriate trim diagram and determine the following: 

 
 a.  Final drafts at the forward and aft perpendiculars. 
 
 b.  The Air Boss desires that the ship return to an even keel. To achieve this, the 

DCA must transfer salt water between two ballast tanks located 650 ft apart. How 
many LT of ballast must be transferred to return the ship to an even keel? 
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26.  An FFG-7 class ship is sitting on an even keel at a draft of 15.5 ft. Lpp = 408 ft, and the 
ship’s center of gravity is 19.5 ft above the keel. 63 LT are removed from a location 24 
feet aft of amidships. Construct a trim diagram and determine the ship’s final draft at the 
forward and aft perpendiculars.  

 
27.  A DD-963 class ship is sitting pierside with a forward draft of 20.7 ft and an aft draft of 

21.7 ft. Lpp = 529 ft. 70 LT of equipment is added 132 ft forward of amidships. Using an 
appropriate diagram, determine the ship’s final drafts at the forward and aft 
perpendiculars. 

 
28.  A DDG-51 class ship is floating on an even keel at a draft of 21 ft. Lpp = 465 ft. During a 

yard period, 230 LT is removed from a location 57 ft forward of amidships, 5 ft above the 
keel, and 5 ft port of centerline.  

 
 a.  How has the weight removal affected KG, TCG, and LCG? 
 
 b.  Construct an appropriate trim diagram and determine the ship’s draft at the 

forward and aft perpendiculars after removing the weight. 
 
29.  USS RANIER (AOE-7) is underway on an even keel at a draft of 38 ft. KG = 33 ft on the 

centerline. Lpp = 734 ft. During a day of UNREP, 750000 gallons of F-76 and JP-5 are 
transferred from tanks located on the centerline, 19 ft above the keel, and 225 ft aft of 
amidships to ships of an ARG. (ρfuel = 1.616 lb s2/ft4) 

 
a. How many tons of fuel was transferred to the ARG? 
 
b. What is the new KG of the ship after UNREP? 

 
c. Using an appropriate diagram determine the ship’s forward, aft, and mean drafts 

following the UNREP. 
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